Dinosaurs (from Greek: δεινός terrible or potent, and σαύρα lizard) are a diverse group of animals that were the
800px-Fossil Tyranausaurus Rex at the Royal Tyrell Museum, Alberta, Canada
dominant terrestrial vertebrates for over 160 million years, from the late Triassic period (about 230 million years ago) until the end of the Cretaceous (about 65 million years ago), when the Cretaceous–Paleogene extinction event led to the extinction of most dinosaur species at the close of the Mesozoic era. The fossil record indicates that birds evolved within theropod dinosaurs during the Jurassic period. Some of them survived the Cretaceous–Paleogene extinction event, including the ancestors of all modern birds. Consequently, in modern classification systems, birds are considered a type of dinosaur—the only group of which that has survived to the present day.

Dinosaurs are a diverse and varied group of animals; birds, at over 9,000 species, are the most diverse group of vertebrate besides perciform fish.Paleontologists have identified over 500 distinct genera and more than 1,000 different species of non-avian dinosaurs.Dinosaurs are represented on every continent by both extant species and fossil remains.Some dinosaurs are herbivorous, others carnivorous. Many dinosaurs, including birds, have been bipedal, though many extinct groups were quadrupedal, and some were able to shift between these body postures. Many species possess elaborate display structures such as horns or crests, and some prehistoric groups developed even more elaborate skeletal modifications such as bony armor. Avian dinosaurs have been the planet's dominant flying vertebrate since the extinction of the pterosaurs, and evidence suggests that all ancient dinosaurs built nests and laid eggs much as avian species do today. Although generally known for the large size of some species, most Mesozoic dinosaurs were human-sized or even smaller.

The term "dinosaur" was coined in 1842 by the English paleontologist Richard Owen, and derives from Greek δεινός (deinos) "terrible, powerful, wondrous, potent" + σαῦρος (sauros) "lizard". Through the first half of the 20th century, most of the scientific community believed dinosaurs to have been sluggish, unintelligent cold-blooded animals. Most research conducted since the 1970s, however, has indicated that dinosaurs were active animals with elevated metabolisms and numerous adaptations for social interaction.

Since the first dinosaur fossils were recognized in the early 19th century, mounted fossil dinosaur skeletons or replicas have been major attractions at museums around the world, and dinosaurs have become a part of world culture. They have been featured in best-selling books and films such as Jurassic Park, and new discoveries are regularly covered by the media. In informal speech, the word "dinosaur" is used to describe things that are impractically large, obsolete, or bound for extinction,reflecting the outdated view that dinosaurs were maladapted monsters of the ancient world.

Capabilities and Behaviours of DinosaursEdit


Only a tiny percentage of animals are ever fossilized, and most of those are still buried in the earth. As a result, the smallest and largest non-avian dinosaurs will probably never be discovered. Even among those that are recovered, very few are known from complete skeletons and even impressions of soft tissue like skin is very rare. So reconstructing a skeleton by comparing the size and morphology of the bones to the bones of similar, better-known species is inexact; and restoring the muscles and other organs is at best educated guesswork.

While the largest and smallest will probably remain unknown, and comparisons between existing specimens is imprecise, it is clear that as a group they were very large. But even by dinosaur standards the sauropods were gigantic. The smallest sauropods were larger than anything else in their habitat, and the largest were an order of magnitude more massive than anything else that has ever walked the Earth.

The tallest and heaviest dinosaur known from a complete skeleton is still the Brachiosaurus (now Giraffatitan) which was discovered in Tanzania between 1907–1912, and is now mounted in the Humboldt Museum of Berlin. It is 12 m (38 ft) tall, and probably weighed between 30,000–60,000 kg (30–65 tons). The longest is the 27 m (89 ft) long Diplodocus which was discovered in Wyoming, and mounted in Pittsburgh's Carnegie Natural History Museum in 1907.

There are bigger dinosaurs, but they are known from only a small handful of bones. The current record holders all date from the 1970s or later, and include the massive Argentinosaurus, which may have weighed 80,000–100,000 kg (90–110 tons); the longest, the 40 m (130 ft) long Supersaurus; and the tallest, the 18 m (60 ft) Sauroposeidon, which could have reached into a 6th-floor window.

No other group of terrestrial animals even comes close. The largest elephant on record weighed a mere 12,000 kg (13.5 tons), and the tallest giraffe was just 6 m (20 ft) tall. Even giant prehistoric mammals like the Indricotherium and the Columbian mammoth were dwarfed by the giant sauropods. Only a small handful of aquatic animals approach it in size, of which the blue whale is largest, reaching up to 190,000 kg (210 tons) and 33.5 m (110 ft) in length.

Discounting modern birds like the bee hummingbird, the smallest dinosaurs known were about the size of a crow or a chicken. The Microraptor, Parvicursor, and Saltopus were all under 60 cm (2 ft) in length.

Dinosaur behaviorEdit

The behavior of non-avian dinosaurs will always be a mystery simply because none exist today. Paleontologists must rely on evidence gleaned from fossil tracks, skeletons locked in battle (Velociraptor and Protoceratops), and fossilized nests. Much evidence varies, depicting several different behaviors. Herbivores may have exhibited significant social behavior, migrating in huge herds much like modern day mammals (i.e. African species). One hypothesis holds that this behavior could have provided a warning system against certain predators. Carnivorous dinosaurs possibly exhibited social characteristics as well, as do present-day wolves and large cats. Family units may have traveled together over long periods to help each other survive. All interpretations of dinosaur behavior rely on speculation and promise to generate controversy for the forseeable future.

Scientific Study of dinosaursEdit

Fields of studyEdit

Dinosaurs are studied by palaeontologists. Fields of expertise include the discovery, reconstruction and conservation of dinosaur fossils and the interpretation of those fossils to understand better the evolution, classification and behaviour of dinosaurs.
File:Triassic-dinosaurs 1256 600x450.jpg

Evolution of dinosaurs

Dinosaurs split off from their archosaur ancestors during the Triassic period.

Classification of dinosaursEdit

Dinosaurs are divided into two major orders, the Saurischia and the Ornithischia, on the basis of hip structure. See List of dinosaur classifications for more information.


Saurischians (from the Greek, meaning "lizard hip") are dinosaurs that retained the hip structure of their ancestors. They include all the Theropods (bipedal carnivores) and sauropods (long-necked herbivores). For more detail, see Saurischia.


The other dinosaurian order is the Ornithischia (from the Greek, meaning 'bird-hip'; also known as Predentata), most of which were quadrupedal herbivores. For more details, see Ornithischia.

Areas of debate in the study of dinosaursEdit

Were dinosaurs warm-blooded?Edit

Scientists have waged a constant and vigorous debate over the temperature regulation of dinosaur blood— at first over its possibility, then over its method— a debate first popularized by Robert T. Bakker. From the first discovery of dinosaurs, paleontologists posited that they were ectothermic creatures: "terrible lizards" as their name suggested. This axiomatic expectation implied that dinosaurs were mostly slow, sluggish organisms, comparable to modern reptiles, which need the sun to heat their bodies. However, new evidence of dinosaurs in chilly temperate climates, of polar dinosaurs in Australia, where they experienced a six-month chilly and dark winter, of feathered dinosaurs whose feathers provided regulatory insulation, and analysis of blood-vessel structures that are typical of endotherms within dinosaur bone, confirmed the possibility that some dinosaurs regulated their body temperature by internal biological methods, some aided partly by their very bulk. Skeletal structures suggest active lifestyles for theropods and other creatures, behavior more suitable for an endothermic cardiovascular system. Sauropods exhibit fewer endothermic characters. Perhaps some dinosaurs were endothermic and others not. Scientific debate over the details continues, although many paleontologists would now agree that endothermic systems are more likely.
File:Cretaceous-collection 907 600x450.jpg

Complicating this debate, warm-bloodedness can emerge from more than one mechanism. Most discussions of dinosaur endothermia compare them to average birds or mammals, which expends energy to elevate body temperature above that of the environment. Small birds and mammals also possess insulation of some sort, such as fat, fur, or feathers, to slow down heat loss. However, large mammals, such as elephants, face a different problem because due to their relatively small surface area to volume ratio. This ratio compares the volume of an animal with the area of its skin: as an animal gets bigger, its surface area increases more slowly than its volume. At a certain point, the amount of heat radiated away through the skin drops below the amount of heat produced inside the body, forcing animals to use additional methods avoid overheating. In the case of elephants, they lack fur, and have large ears which increase their surface area, and have behavioural adaptations as well, such as using the trunk to spray water on themselves and mud wallowing. These behaviours increase cooling through evaporation.

Large dinosaurs would presumably have faced the same situation: their size would dictate that they lost heat relatively slowly to the surrounding air, and so could have been what are called bulk endotherms, animals that are warmer than their environments through sheer size rather than any special adaptations like those of birds and mammals.

Feathered dinosaurs and the bird connectionEdit

Since the 1990s, a number of feathered dinosaurs have been found, providing clear evidence of the close relationship between dinosaurs and birds. Most of these specimens were local to Liaoning province in northeastern China, which was part of an island continent in the Cretaceous; however, the feathers were only preserved by the remarkable geology of the Chinese sites and their superbly detailed fossils; it is therefore possible that dinosaurs elsewhere in the world may have been feathered too, even though the feathers have not been preserved.

The feathered dinosaurs discovered so far include Sinosauropteryx, Protarchaeopteryx, Caudipteryx and Confuciusornis, all of which come from northern China's Yixian formation. The dromaeosauridae family in particular seems to have been heavily feathered, and at least one dromaeosaurid, Cryptovolans, may have been capable of flight.

Because feathers are often associated with birds, feathered dinosaurs are often touted as the missing link between birds and dinosaurs. However, the association of multiple skeletal features also shared by the two groups is the more important link for paleontologists. Furthermore, it is increasingly clear that the relationship between birds, dinosaurs and the evolution of flight is more complex than has been previously realised. For example, while it was once believed that birds simply evolved from dinosaurs and went their separate way, some scientists now believe that some dinosaurs, such as the dromaeosaurs, may have actually evolved from birds, losing the power of flight while keeping the feathers.

see also: Feathered dinosaurs

Theories of extinctionEdit

The extinction of the non-avian dinosaurs is one of the most intriguing problems in paleontology. Only since the 1980s has the nature of this extinction become apparent. The theory first proposed by Walter Alvarez linked the extinction event at the end of the Cretaceous period to a meteorite impact about 65.5 million years ago, based on a sudden change in Iridium levels in fossilized layers. The bulk of the evidence now indicates that a 10-kilometer-wide bolide hit the Yucatan Peninsula 65 million years ago, creating the 170-km wide Chicxulub crater, and caused the extinction. Scientists are still disputing whether dinosaurs were in steady decline or still thriving before the meteor struck.

Although the speed of extinction cannot be deduced from the fossil record alone, the latest models suggest the extinction was extremely rapid. It appears to have been caused by heat caused by the meteorite impact and the matter ejected from the crater re-entering the atmosphere around the world. Other theories link the extinction with increased volcanic activity, decreasing oxygen level in the atmosphere and dropping temperatures.

Other groups as well as the dinosaurs went extinct at the same time, including ammonites, mosasaurs, plesiosaurs, pterosaurs, herbivorous turtles and crocodiles, most kinds of birds, and many groups of mammals, became extinct.

Evidence for Cenozoic non-avian dinosaursEdit

It has been claimed that fossils from El Ojo, South America, represent remains of non-avian dinosaurs surviving the extinction and still thriving in the Paleocene epoch. There are also other sporadic claims of post-Cretaceous dinosaur fossils (even a very doubtful finding of dinosaur eggs as late as Eocene). While it is certainly not improbable that some scattered population of some (presumably small) dinosaur species could have survived at least some hundred year after the mass extinction, evidence now points to El Ojo (and most other) findings as Cretaceous fossils contaminating Paleocene strata. Nevertheless it is still theorized that some dinosaur population could have survived the main extinction event isolated in Antarctica, then being killed by the climatic change.

Bringing dinosaurs back to lifeEdit

There has been much speculation about the availability of technology to bring dinosaurs back to life. The idea proposed in Michael Crichton's book Jurassic Park, using blood from fossilized mosquitos that have been suspended in sap since the dinosaur times and then filling in the gaps with frog genes to create the DNA of a dinosaur, is probably impossible.

There have been two claims about the successful extraction of ancient DNA from dinosaur fossils, but upon further inspection, neither of these reports could be confirmed (Wang et al., 1997). However, a working visual peptide of a (theoretical) dinosaur has been inferred, using analytical phylogenetic reconstruction methods on gene sequences of still-living related species (reptiles and birds) (Chang et al., 2002).

History of the study of dinosaursEdit

Dinosaur fossils have been known about for millennia, though their true nature was not recognised; the Chinese considered them to be dragon bones, while Europeans believed them to be the remains of giants and other creatures killed by the Great Flood. The first dinosaur species to be identified and named was Iguanodon, discovered in 1822 by the English geologist Gideon Mantell, who recognised similarities between his fossils and the bones of modern iguanas. Two years later, the Rev William Buckland, professor of geology at Oxford University, became the first person to describe a dinosaur in a scientific journal — in this case Megalosaurus bucklandii, found near Oxford. The study of these "great fossil lizards" became of great interest to European and American scientists, and in 1842 the English palaeontologist Richard Owen coined the term "dinosaur". He recognised that the remains that had been found so far — Iguanodon, Megalosaurus and Hylaeosaurus — had a number of features in common, so decided to present them as a distinct taxonomic group. With the backing of Prince Albert of Saxe-Coburg-Gotha, husband of Queen Victoria, Owen established the Natural History Museum in South Kensington, London, to display the national collection of dinosaur fossils and other biological and geological exhibits.

In 1858, the first known American dinosaur was discovered in marl pits of the small town of Haddonfield, New Jersey (although fossils had been found before, their nature had not been identified). The creature was named Hadrosaurus foulkii, after the town and the discoverer, William Parker Foulke. It was an extremely important find: Hadrosaurus was the first nearly complete dinosaur skeleton ever found and it was clearly a bipedal creature. This was a revolutionary discovery, as it had been thought by most scientists that dinosaurs walked on four feet like lizards. Foulke's discoveries sparked a dinosaur mania in the United States which was exemplified by the fierce rivalry of Edward Drinker Cope and Othniel Charles Marsh, who each competed to outdo the other in finding new dinosaurs in what came to be known as the Bone Wars. Their feud lasted for nearly 30 years and only ended in 1897 when Cope died after spending his entire fortune in the dinosaur hunt. Marsh won the contest by virtue of being better funded through the US Geological Survey. Cope's collection is now at the American Museum of Natural History in New York, while Marsh's is displayed at the Peabody Museum of Natural History at Yale University.

Since then, the search for dinosaurs has been carried to every continent on Earth. This includes Antarctica, where the first dinosaur, a nodosaurid Ankylosaurus, was discovered on Ross Island in 1986, though it was 1994 before an Antartic dinosaur, the Cryolophosaurus ellioti, was formally named and described in a scientific journal. Current "hotspots" include southern South America (especially Chile) and China, which has produced many exceptionally well-preserved feathered dinosaurs.

Community content is available under CC-BY-SA unless otherwise noted.